如图,是外一点,是切线,为切点,割线与相交于,,为的中点,的延长线交于点.证明:
(1);
(2)
已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得≥1?若存在,求m的最小值;若不存在,说明理由.
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cos B-sin(A-B)sin B+cos(A+C)=-
.
(1)求cos A的值;
(2)若a=4,b=5,求向量
在
方向上的投影.
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B=
(1)求b的值;
(2)求sin 的值.