设椭圆
的左、右焦点分别为
,,右顶点为
,上顶点为
.已知
.
(1)求椭圆的离心率;
(2)设
为椭圆上异于其顶点的一点,以线段
为直径的圆经过点
,经过点
的直线
与该圆相切与点
,
.求椭圆的方程.
某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六组:,
,
后得到如图的频率分布直方图.
(Ⅰ)求图中实数的值;
(Ⅱ)若该校高一年级共有学生500人,试估计该校高一年级在考试中成绩不低于60分的人数;
(Ⅲ)若从样本中数学成绩在与
两个分数段内的学生中随机选取两名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.
先后随机投掷2枚正方体骰子,其中表示第
枚骰子出现的点数,
表示第
枚骰子出现的点数.
(Ⅰ)求点在直线
上的概率;
(Ⅱ)求点满足
的概率.
已知函数
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)求函数的单调增区间;
(3)若,求
的最大值和最小值.
已知函数
(Ⅰ)若是从
三个数中任取的一个数,
是从
四个数中任取的一个数,求
为偶函数的概率;
(Ⅱ)若,
是从区间
任取的一个数,求方程
有实根的概率.
已知为第三象限角,
.
(1)化简(2)若
,求
的值