游客
题文

已知函数fx=x4+ax-lnx-32,其中aR,且曲线y=fx在点1,f1处的切线垂直于y=12x.
(1)求a的值;
(2)求函数fx的单调区间与极值.

科目 数学   题型 解答题   难度 中等
知识点: 组合几何
登录免费查看答案和解析
相关试题

已知函数
(1)求不等式的解集;
(2)若不等式有解,求实数的取值范围。

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为为参数),点Q的极坐标为
(1)化圆C的参数方程为极坐标方程;
(2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。

求:(1)⊙O的半径;(2)s1n∠BAP的值。

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)设,若对任意恒有,求实数的取值范围.

已知椭圆)的右焦点,右顶点,且

(1)求椭圆的标准方程;
(2)若动直线与椭圆有且只有一个交点,且与直线交于点,问:是否存在一个定点,使得.若存在,求出点坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号