如图,设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 ,点 D 在椭圆上, D F 1 ⊥ F 1 F 2 , F 1 F 2 D F 1 = 2 2 , △ D F 1 F 2 的面积为 2 2 . (1)求该椭圆的标准方程; (2)是否存在圆心在 y 轴上的圆,使圆在 x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
已知数列,且 (1)求数列的通项公式; (2)设,求适合方程的正整数的值。
复数,若,求的值.
【原创】设函数. (1)若函数在定义域上为增函数,求实数的取值范围; (2)在(1)的条件下,若函数,使得成立,求实数的取值范围.
已知函数在上满足,且当时,。 (1)求、的值; (2)判定的单调性; (3)若对任意x恒成立,求实数的取值范围。
正项数列满足. (1)求数列的通项公式; (2)令,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号