如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为、宽度为、高为,上下两面是绝缘板,前后两侧面、是电阻可忽略的导体板,两导体板与开关S和定值电阻相连。整个管道置于磁感应强度大小为,方向沿轴正方向的匀强磁场中。管道内始终充满电阻率为的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动,液体所受的摩擦阻力不变。
(1)求开关闭合前,、两板间的电势差大小;
(2)求开关闭合前后,管道两端压强差的变化;
(3)调整矩形管道的宽和高,但保持其它量和矩形管道的横截面不变,求电阻可获得的最大功率及相应的宽高比的值。
22.如图所示,物体A放在足够长的木板B上,木板B静止于水平面。t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零,加速度aB=1.0m/s2的匀加速直线运动。已知A的质量mA和B的质量mg均为2.0kg,A、B之间的动摩擦因数=0.05,B与水平面之间的动摩擦因数
=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10m/s2。求
(1)物体A刚运动时的加速度aA
(2)t=1.0s时,电动机的输出功率P;
(3)若t=1.0s时,将电动机的输出功率立即调整为P`=5W,并在以后的运动过程中始终保持这一功率不变,t=3.8s时物体A的速度为1.2m/s。则在t=1.0s到t=3.8s这段时间内木板B的位移为多少?
14. (16分)在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。如图所示,他们将选手简化为质量m=60kg的指点, 选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=
,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取中立加速度
,
,
求选手摆到最低点时对绳拉力的大小F;
若绳长l="2m," 选手摆到最高点时松手落入手中。设水碓选手的平均浮力,平均阻力
,求选手落入水中的深度
;
若选手摆到最低点时松手, 小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
30.如图,ABC和ABD为两个光滑固定轨道,A、B、E在同一水平面,C、D、E在同一竖直线上,D点距水平面的高度h,C点高度为2h,一滑块从A点以初速度分别沿两轨道滑行到C或D处后水平抛出。
(1)求滑块落到水平面时,落点与E点间的距离和
.
(2)为实现<
,
应满足什么条件?
24.(15)如图,MNP 为整直面内一固定轨道,其圆弧段MN与水平段NP相切于N、P端固定一竖直挡板。M相对于N的高度为h,NP长度为s.一木块自M端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞后停止在水平轨道上某处。若在MN段的摩擦可忽略不计,物块与NP段轨道间的滑动摩擦因数为μ,求物块停止的地方与N点距离的可能值。
24.(20分)如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。一不带电的绝缘小球甲,以速度υ0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1) 甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下。求的甲的速度υ0;
(3)若甲仍以速度υ0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。