随机观测生产某种零件的某工厂名工人的日加工零件数(单位:件),获得数据如下:
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
、
,根据上述数据得到样本的频率分布表如下:
分组 |
频数 |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
![]() |
(1)确定样本频率分布表中的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取人,至少有
人的日加工零件数落在区间
的概率.
已知点,
,动点G满足
.
(Ⅰ)求动点G的轨迹的方程;
(Ⅱ)已知过点且与
轴不垂直的直线l交(Ⅰ)中的轨迹
于P,Q两点.在线段
上是否存在点
,使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.
设函数(
)
(Ⅰ)若函数是定义在R上的偶函数,求a的值;
(Ⅱ)若不等式对任意
,
恒成立,求实数m的取值范围.
在数列中,前n项和为
,且
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列
前n项和为
,求
的取值范围.
某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
频率分布直方图茎叶图
(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在
的学生个数,求
的分布列及其数学期望.
已知.
(Ⅰ)求的最大值及取得最大值时x的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若,
,
,求△ABC的面积.