(本小题满分12分)在中,角
所对的边为
,且满足
(1)求角的值;
(2)若且
,求
的取值范围.
(本小题满分15分)
如图,椭圆的中心在原点,焦点在
轴上,
分别是椭圆
的左、右焦点,
是椭圆短轴的一个端点,过
的直线
与椭圆交于
两点,
的面积为
,
的周长为
.
(1)求椭圆的方程;
(2)设点的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
(本小题满分15分)
某企业有两个生产车间分别在A,B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A,B,C中任意两点间的距离均有1 km,设∠BDC=,所有员工从车间到食堂步行的总路程为S.
(1)写出S关于的函数表达式,并指出
的取值范围;
(2)问食堂D建在距离A多远时,可使总路程S最少?
(本小题满分14分)
如图,四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.
(1)求证:BG面PAD;
(2)E是BC的中点,在PC上求一点F,使得PG面DEF.
(本小题满分14分)
设已知,
,其中
.
(1)若,且
,求
的值;
(2)若,求
的值.
.(本小题满分10分)选修4-5:不等式选讲
设函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若,
恒成立,求实数
的取值范围.