如图,动点 到两定点 、 构成 ,且 ,设动点 的轨迹为 .
(Ⅰ)求轨迹
的方程;
(Ⅱ)设直线
与
轴交于点
,与轨迹
相交于点
、
,且
,求
的取值范围。
(本题满分12分)设为抛物线
的焦点,
为抛物线上任意一点,已
为圆心,
为半径画圆,与
轴负半轴交于
点,试判断过
的直线与抛物线的位置关系,并证明。
(本题满分12分)
求圆心在直线上,且经过圆
与圆
的交点的圆方程.
设平面直角坐标系中,设二次函数
的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(1)求实数的取值范围;
(2)求圆C 的方程;
(3)问圆C 是否经过某定点(其坐标与无关)?请证明你的结论.
(本题满分10分)
若直线过点(0,3)且与抛物线y2=2x只有一个公共点,求该直线方程.
(本小题满分l2分)
已知函数
(1)若,求函数
的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量
使得
的值相等,若存在,请求出
的范围,若不存在,请说明理由?