四面体
及其三视图如图所示,平行于棱
的平面分别交四面体的棱
于点
.
(1)求四面体
的体积;
(2)证明:四边形
是矩形.
已知方向向量的直线l 过点(
)和椭圆C:
的焦点,且椭圆的中心关于直线l的对称点在椭圆C的右准线上。
(1)求椭圆C的方程;
(2)是否存在过点E(-2,0)的直线m交椭圆C于M、N,满足(O为原点),若存在求出直线的方程,若不存在,请说明理由。
已知
(1)判断f(x)的单调性;
(2)设
证明:
(3)证明:
如图,在三棱锥P—ABC中,PA⊥底面ABC,∠BAC=60°,AB=AC=2,以PA为直径的球O和PB、PC分别交于B1、C1
(1)求证B1C1∥平面ABC
(2)若二面角C—PB—A的大小为arctan2,试求球O的表面积。
某投资公司2010年初准备将1000万投资到“低碳”项目上,现有两个项目可供选择
项目一:新能源汽车。据市场调研,投资到该项目上,到年底可获利30%,也可能亏损15%,且这两种情况发生的概率分别为
项目二:通信设备。据市场调研,投资到该项目上,到年底可获利50%,可能损失30%,也可能不赔不赚,且这三种情况发生的概率分别为
(1)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(2)若市场预期不变,该投资公司按照你选择的项目长期投资(每年的利润和本金继续用作投资),问大约在哪一年的年底该投资公司的总资产(利润+本金)可翻一番?(参考数据lg2=0.3010,lg3=0.4771)
已知函数
(1)设ω>0为常数,若y=f(ωx)在区间[]上是增函数,求ω的取值范围。
(2)求