如图,在平面直角坐标系中,点
,直线
.设圆
的半径为
,圆心在
上.
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
(本小题满分12分)
已知斜三棱柱ABC—A1B1C1,侧面ACC1A1与底面ABC垂直,,BC=2,
(Ⅰ)试判断A1A与平面A1BC是否垂直,并说明理由;
(Ⅱ)求底面ABC与侧面BB1C1C所成二面角的余弦值。
(本小题满分12分)
为征求个人所得税修改建议,某机构对不发居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)
(I)求居民月收入在的频率;
(II)根据频率分布直方图估算样本数据的中位数;
(III)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽多少人?
(本小题满分12分)
如图所示,甲船由A岛出发向北偏东的方向作匀
速直线航行,速度为
海里/小时,在甲船从A岛出发的同时,乙船从A岛正南40海里处的B岛出发,朝北偏东
的方向作匀速直线航行,速度为
海里/小时。
(1)若两船能相遇,求。
(2)当时,求两船出发后多长时间距离最近,最近距离为多少海里?
(求100~999中的水仙花数,所谓水仙花数是一个三位数,它的各位数字的立方和等于该数,例如153是一个水仙花数,因为.试编一段程序,找出所有的水仙花数.
甲乙两人各有相同的小球10个,在每人的10个小球中都有5个标有数字1,3个标有数字2,2个标有数字3。两人同时分别从自己的小球中任意抽取1个,规定:若抽取的两个小球上的数字相同,则甲获胜,否则乙获胜,求乙获胜的概率。