已知(-
)n的展开式中,前三项系数的绝对值依次成等差数列.
(1)证明:展开式中没有常数项;
(2)求展开式中所有的有理项.
(本小题满分12分)已知数列的前
项和为
,且有
.
(1)求数列的通项公式;
(2)若求数列
的前n项和
设的内角
所对的边分别为
且
.
(1)求角的大小;
(2)若,求
的周长的取值范围.
已知函数(
),
(1)求函数的最小值;
(2)已知,
:关于
的不等式
对任意
恒成立;
:函数
是增函数.若“
或
”为真,“
且
”为假,求实数
的取值范围.
已知函数,
(a为实数).
(1)当a=5时,求函数在
处的切线方程;
(2)求在区间
上的最小值;
(3)若存在两不等实数,使方程
成立,求实数a的取值范围.
为改善购物环境,提高经济效益,某商场决定投资800万元改造商场内部环境,据调查,改造好购物环境后,任何一个月内(每月按30天计算)每天的顾客人数与第x天近似地满足
(千人),且每位顾客人均购物金额数
近似地满足
(元).
(1)求该商场第x天的销售收入(单位千元,1≤x≤30,
)的函数关系;
(2)若以最低日收入的20%作为每一天纯收入的计量依据,商场决定以每日纯收入的5%收回投资成本,试问商场在两年内能否收回全部投资成本.