某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次 购物量 |
1至 4件 |
5至 8件 |
9至 12件 |
13至 16件 |
17件及 以上 |
顾客数(人) |
x |
30 |
25 |
y |
10 |
结算时间 (分钟/人) |
1 |
1.5 |
2 |
2.5 |
3 |
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
口袋内装有3个白球和2个黑球,这5个球除颜色外完全相同.每次从袋中随机地取出一个,连续取出2个球:
⑴列出所有等可能的结果;
⑵求取出的2个球不全是白球的概率.
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少时间?
如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用算法框图表示这一算法过程.
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,
求(1)重量超过500 克的产品的频率;
(2)重量超过500 克的产品的数量.
(本小题15分)
先阅读下列不等式的证法,再解决后面的问题:已知且
,求证
证明:构造函数
因为对一切
,恒有
,所以
4-8
,从而
(1)若,且
,请写出上述结论的推广式;
(2)参考上述证法,对你的结论加以证明;
(3)若,求证
.[