已知在数列{an}中,a1=t,a2=t2,其中t>0,x=是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1 (n≥2)的一个极值点(Ⅰ)求数列{an}的通项公式
(Ⅱ)当时,令
,数列
前
项的和为
,求证:
(Ⅲ)设,数列
前
项的和为
,
求同时满足下列两个条件的
的值:(1)
(2)对于任意的
,均存在
,当
时,
设函数f(x)=lnx-px+1(1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围(2)证明:
(n∈N
,n≥2)
已知函数f(x)=x|x2-a|(a∈R),(1)当a≤0时,求证函数f(x)在(-∞,+∞)上是增函数;(2)当a=3时,求函数f(x)在区间[0,b]上的最大值
数列{an}满足a1=1,a2=2,an+2=(1+cos2)an+sin
,n=1、2、3…1)求a3、a4并求数列{an}的通项公式(2)设bn=
,令 Sn=
求Sn
设函数f(x)=sin(x-
)-2cos2
x+1(1)求f(x)的最小正周期(2)若函数y=g(x)与f(x)的图象关于直线x=1对称,求当x∈[0,
]时,y=g(x)的最大值