设函数f(x)=lnx-px+1(1)当P>0时,若对任意x>0,恒有f(x)≤0,求P的取值范围(2)证明:
(n∈N
,n≥2)
设函数,其中
;
(Ⅰ)若的最小正周期为
,求
的单调增区间;
(Ⅱ)若函数的图象的一条对称轴为
,求
的值.
已知是函数
的一个极值点。
(Ⅰ)求;
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数
的图象有3个交点,求
的取值范围。
设函数f()=
,且方程
的两个根分别为1,4.
(1)当=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在(-∞,+∞)内无极值点,求的取值范围.
某市规定中学生百米成绩达标标准为不超过16秒.现从该市中学生中按照男、女生比例随机抽取了50人,其中有30人达标.将此样本的频率估计为总体的概率.
(1)随机调查45名学生,设ξ为达标人数,求ξ的数学期望与方差.
(2)如果男、女生采用相同的达标标准,男、女生达标情况如下表:
男 |
女 |
总计 |
|
达标 |
a=24 |
b=[ |
|
不达标 |
c= |
d=12 |
|
总计 |
n=50 |
根据表中所给的数据,完成2×2列联表(注:请将答案填到答题卡上),并判断在犯错误的概率不超过0.01的前提下能否认为“体育达标与性别有关”?若有,你能否给出一个更合理的达标方案?
附:
P(![]() |
0.025 |
0.01 |
0.005 |
0.001 |
![]() |
5.024 |
6.635 |
7.879 |
10.828 |
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,其中女性300人,男性200人.女性中有30人需要帮助,另外270人不需要帮助;男性中有40人需要帮助,另外160人不需要帮助.
(1)根据以上数据建立一个2×2列联表.
(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
P(![]() |
0.025 |
0.01 |
0.005 |
0.001 |
![]() |
5.024 |
6.635 |
7.879 |
10.828 |