游客
题文

设函数,其中
(Ⅰ)若的最小正周期为,求的单调增区间;
(Ⅱ)若函数的图象的一条对称轴为,求的值.    

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

(本小题满分12分)已知函数
(Ⅰ)求满足时的的集合;
(Ⅱ)当时,求函数的最值.

(本小题12分)为了丰富学生的课余生活,促进校园文化建设,我校高二年级通过预赛选出了6个班(含甲、乙)进行经典美文颂读比赛决赛.决赛通过随机抽签方式决定出场顺序.
求:(1)甲、乙两班恰好在前两位出场的概率;
(2)决赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.

(本小题满分14分)
以椭圆的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足.
(Ⅰ)求椭圆及其“准圆”的方程;
(Ⅱ)若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.

已知函数图像上的点处的切线方程为.
(1)若函数时有极值,求的表达式;
(2)函数在区间上单调递增,求实数的取值范围.

已知向量.
(Ⅰ)若;
(Ⅱ)设的三边满足,且边所对应的角为,若关于的方程有且仅有一个实数根,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号