某市规定中学生百米成绩达标标准为不超过16秒.现从该市中学生中按照男、女生比例随机抽取了50人,其中有30人达标.将此样本的频率估计为总体的概率.
(1)随机调查45名学生,设ξ为达标人数,求ξ的数学期望与方差.
(2)如果男、女生采用相同的达标标准,男、女生达标情况如下表:
|
男 |
女 |
总计 |
达标 |
a=24 |
b= [ |
|
不达标 |
c= |
d=12 |
|
总计 |
|
|
n=50 |
根据表中所给的数据,完成2×2列联表(注:请将答案填到答题卡上),并判断在犯错误的概率不超过0.01的前提下能否认为“体育达标与性别有关”?若有,你能否给出一个更合理的达标方案?
附:
P(![]() |
0.025 |
0.01 |
0.005 |
0.001 |
![]() |
5.024 |
6.635 |
7.879 |
10.828 |
已知椭圆 的左焦点为 ,右顶点为 , 为 上一点,且直线 的斜率为 , 的面积为 ,离心率为 .
(1)求椭圆的方程;
(2)过点 的直线与椭圆有唯一交点 (异于点 ),求证: 平分 .
正方体 的棱长为 , 分别为 中点, .
(1)求证: 平面 ;
(2)求平面 与平面 夹角的余弦值;
(3)求三棱锥 的体积.
在 中,角 的对边分别为 .已知 , , .
(1)求 的值;
(2)求 的值;
(3)求 的值.
在直角坐标系 中,点 到 轴的距离等于点 到点 的距离,记动点 的轨迹为 .
(1)求 的方程;
(2)已知矩形 有三个顶点在 上,证明:矩形 的周长大于 .
甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为 ,乙每次投篮的命中率均为 .由抽签确定第 次投篮的人选,第 次投篮的人是甲、乙的概率各为 .
(1)求第 次投篮的人是乙的概率;
(2)求第 次投篮的人是甲的概率;
(3)已知:若随机变量 服从两点分布,且 , 则 .记前 次(即从第 次到第 次投篮)中甲投篮的次数为 ,求 .