证明:已知,则
如图,在四棱锥中,底面
是边长为
的正方形,
,
,且
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一点
,使直线
与平面
所成的角是
?若存在,求
的长;若不存在,请说明理由.
如图,在四棱锥中,底面
为矩形,
底面
,
、
分别是
、
中点.
(1)求证:平面
;
(2)求证:.
已知椭圆:
,直线
交椭圆
于
两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点
,动点
在
轴上的正射影为点
,且满足直线
.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线
的方程.
如图,在矩形中,点
为边
上的点,点
为边
的中点,
,现将
沿
边折至
位置,且平面
平面
.
(Ⅰ)求证:平面平面
;
(Ⅱ)求四棱锥的体积.