某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列.
(本小题满分14分)
设二次函数满足下列条件:
①当时,其最小值为0,且
成立;
②当时,
恒成立.
(1)求的值;
(2)求的解析式;
(3)求最大的实数,使得存在
,只要当
时,就有
成立
(本小题满分13分)已知:函数对一切实数
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,设P:当
时,不等式
恒成立;Q:当
时,
是单调函数。如果满足P成立的
的集合记为
,满足Q成立的
的集合记为
,求
∩
(
为全集)
(本小题满分12分)已知函数
(1)当时,求函数
在
的值域;
(2)若关于的方程
有解,求
的取值范围
(本小题满分12分)已知函数.
(1)当时,求函数
的最小值;
(2)若对任意的,
恒成立,试求实数
的取值范围
(本小题满分12分)已知函数是定义在
上的增函数,对于任意的
,都有
,且满足
.
(1)求的值;
(2)求满足的
的取值范围.