某工厂生产A,B两种元件,其质量按测试指标划分,指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100个进行检测,检测结果统计如下:
测试 指标 |
[70,76) |
[76,82) |
[82,88) |
[88,94) |
[94,100] |
元件A |
8 |
12 |
40 |
32 |
8 |
元件B |
7 |
18 |
40 |
29 |
6 |
(1)试分别估计元件A,元件B为正品的概率;
(2)生产1个元件A,若是正品则盈利40元,若是次品则亏损5元;生产1个元件B,若是正品则盈利50元,若是次品则亏损10元.在(1)的前提下,
(ⅰ)X为生产1个元件A和1个元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5个元件B所得利润不少于140元的概率.
已知函数最小正周期为
(1)求的单调递增区间
(2)在中,角
的对边分别是
,满足
,求函数
的取值范围
已知命题:
,命题
:
,命题
为真,命题
为假.求实数
的取值范围.
三、解答题(本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤)
17.
已知向量,
的夹角为
, 且
,
, 若
,
, 求(1)
·
;
(2).
射击比赛中,每位射手射击队10次,每次一发,击中目标得3分,未击中目标得0分,每射击一次,凡参赛者加2分,已知小李击中目标的概率为0.8.
(1)设X为小李击中目标的次数,求X的概率分布;
(2)求小李在比赛中的得分的数学期望与方差.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是
元,月平均销售
件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为
,那么月平均销售量减少的百分率为
.记改进工艺后,旅游部门销售该纪念品的月平均利润是
(元).
(1)写出与
的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.