对于三次函数,定义
是
的导函数
的导函数,若方程
有实数解
,则称点
为函数
的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点
对称:
②存在三次函数,若
有实数解
,则点
为函数
的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则:
其中所有正确结论的序号是( ).
A.①②④ | B.①②③ | C.①③④ | D.②③④ |
在△ABC中,a、b、c分别为角A、B、C的对边,若m=(sin2,1),n="(-2,cos" 2A+1),且m⊥n.
(1)求角A的度数;
(2)当a=2,且△ABC的面积S=
时,求边c的值和△ABC的面积.
△ABC为一个等腰三角形形状的空地,腰AC的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为S1和S2.
(1)若小路一端E为AC的中点,求此时小路的长度;
(2)若小路的端点E、F两点分别在两腰上,求的最小值.
在△ABC中,a、b、c分别是角A、B、C所对的边,且a=c+bcosC.
(1)求角B的大小;
(2)若S△ABC=,求b的最小值.
在△ABC中,角A、B、C的对边分别为a、b、c,C=,b=5,△ABC的面积为10
.
(1)求a、c的值;
(2)求sin(A+)的值.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(3)是否存在v,使得小艇以v海里/时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.