某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
已知椭圆的中心为直角坐标系
的原点,焦点在
轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆的方程;
(2)若为椭圆
的动点,
为过
且垂直于
轴的直线上的点,
(
为椭圆的离心率),求点
的轨迹方程,并说明轨迹是什么曲线.
已知双曲线,
、
是双曲线的左右顶点,
是双曲线上除两顶点外的一点,直线
与直线
的斜率之积是
,
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是,求双曲线的方程.
如图,抛物线关于轴对称,它的顶点在坐标原点,点P(1,2),
,
均在抛物线上.
(1)求该抛物线方程;
(2)若AB的中点坐标为,求直线AB方程.
已知函数,
.
(1)如果函数在
上是单调减函数,求
的取值范围;
(2)是否存在实数,使得方程
在区间
内有且只有两个不相等的实数根?若存在,请求出
的取值范围;若不存在,请说明理由.
已知函数在
与
时,都取得极值.
(1)求的值;
(2)若,求
的单调区间和极值;
(3)若对都有
恒成立,求
的取值范围.