某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X |
1 |
2 |
3 |
4 |
Y |
51 |
48 |
45 |
42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
(本小题满分10分)已知.
(Ⅰ)求的值;
(Ⅱ)求的值.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(Ⅰ)写出曲线的直角坐标方程和直线
的普通方程;
(Ⅱ)若,求
的值.
如图,已知为圆
的一条直径,以端点
为圆心的圆交直线
于
两点,交圆
于
两点,过点
作垂直于
的直线,交直线
于
点.
(Ⅰ)求证:四点共圆;
(Ⅱ)若,求
外接圆的半径.
已知函数(
为常数,
是自然对数的底数),曲线
在点
处的切线与
轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中
为
的导函数.证明:对任意
.
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校学年高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在
分下的学生后,共有男生
名,女生
名,现采用分层抽样的方法,从中抽取了
名学生,按性别分为两组,并将两组学生成绩分为
组,得到如下所示频数分布表.
分数段 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
男 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
女 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)估计男、女生各自的平均分(同一组数据用该级区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定分以上者为优分(含
分),请你根据已知条件作出
列联表,并判断是否有
以上的把握认为“数学成绩与性别有关”.
优分 |
非优分 |
合计 |
|
男生 |
|||
女生 |
|||
合计 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |