游客
题文

如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.
(1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 圆内接四边形的性质
登录免费查看答案和解析
相关试题

a>0)

已知正方形ABCD中,E为对角线BD上一点,过E点作EFBDBCF,连接DFGDF中点,连接EGCG

(1)求证:EG=CG
(2)将图①中△BEFB点逆时针旋转45º,如图②所示,取DF中点G,连接EGCG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEFB点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.
(直接写出答案,不需要证明)

已知:如图,在⊿ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点。求证:CF=DE

已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,求证:BE=DF

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号