游客
题文

某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,三棱台 DEF- ABC中,面 ADFC⊥面 ABC,∠ ACB=∠ ACD=45°, DC=2 BC

(I)证明: EFDB

(II)求 DF与面 DBC所成角的正弦值.

在锐角△ ABC中,角 ABC的对边分别为 abc,且 2 b sin A = 3 a

(I)求角 B

(II)求cos A+cos B+cos C的取值范围.

已知 a n 是无穷数列.给出两个性质:

①对于 a n 中任意两项 a i , a j ( i > j ) ,在 a n 中都存在一项 a m ,使 a i 2 a j = a m

②对于 a n 中任意项 a n ( n 3 ) ,在 a n 中都存在两项 a k , a l ( k > l ) .使得 a n = a k 2 a l

(Ⅰ)若 a n = n ( n = 1 , 2 , ) ,判断数列 a n 是否满足性质①,说明理由;

(Ⅱ)若 a n = 2 n - 1 ( n = 1 , 2 , ) ,判断数列 a n 是否同时满足性质①和性质②,说明理由;

(Ⅲ)若 a n 是递增数列,且同时满足性质①和性质②,证明: a n 为等比数列.

已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 过点 A ( - 2 , - 1 ) ,且 a = 2 b

(Ⅰ)求椭圆C的方程:

(Ⅱ)过点的直线l交椭圆C于点 M , N ,直线 MA , NA 分别交直线 x = - 4 于点 P , Q .求 | PB | | BQ | 的值.

已知函数 f ( x ) = 12 - x 2

(Ⅰ)求曲线 y = f ( x ) 的斜率等于 - 2 的切线方程;

(Ⅱ)设曲线 y = f ( x ) 在点 ( t , f ( t ) ) 处的切线与坐标轴围成的三角形的面积为 S ( t ) ,求 S ( t ) 的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号