游客
题文

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示.

 
CD段
EF段
GH段
堵车概率



平均堵车时间
(单位:小时)

2
1

 
经调查发现,堵车概率上变化,上变化.
在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计段平均堵车时间,调查了100名走甲线路的司机,得到下表数据.

堵车时间(单位:小时)
频数
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24

 
(1)求段平均堵车时间的值;
(2)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.

科目 数学   题型 解答题   难度 较易
知识点: 概率及其性质
登录免费查看答案和解析
相关试题

设函数 f ( x ) = a cos 2 x + ( a - 1 ) ( cos x + 1 ) ,其中 a > 0 ,记 | f ( x ) | 的最大值为 A

(Ⅰ)求 f ' ( x )

(Ⅱ)求 A

(Ⅲ)证明: | f ' ( x ) | 2 A

已知抛物线 C : y 2 = 2 x 的焦点为 F ,平行于 x 轴的两条直线 l 1 l 2 分别交 C A B 两点,交 C 的准线于 P Q 两点.

(Ⅰ)若 F 在线段 AB 上, R PQ 的中点,证明 AR / / FQ

(Ⅱ)若 ΔPQF 的面积是 ΔABF 的面积的两倍,求 AB 中点的轨迹方程.

如图,四棱锥 P - ABCD 中, PA 底面 ABCD AD / / BC AB = AD = AC = 3 PA = BC = 4 M 为线段 AD 上一点, AM = 2 MD N PC 的中点.

(1)证明: MN / / 平面 PAB

(2)求直线 AN 与平面 PMN 所成角的正弦值.

如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

注:年份代码 1 - 7 分别对应年份 2008 - 2014

(Ⅰ)由折线图看出,可用线性回归模型拟合 y t 的关系,请用相关系数加以证明;

(Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0 . 01 ) ,预测2016年我国生活垃圾无害化处理量.

附注:

参考数据: i = 1 7 y i = 9 . 32 i = 1 7 t i y i = 40 . 17 i = 1 7 ( y i - y ̅ ) 2 = 0 . 55 7 2 . 646

参考公式:相关系数 r = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 i = 1 n ( y i - y ̅ ) 2

回归方程 y ̂ = a ̂ + b ̂ t 中斜率和截距的最小二乘估计公式分别为:

b ̂ = i = 1 n ( t i - t ̅ ) ( y i - y ̅ ) i = 1 n ( t i - t ̅ ) 2 a ̂ = y ̅ - b ̂ t ̅

已知数列 { a n } 的前 n 项和 S n = 1 + λ a n ,其中 λ 0

(1)证明 { a n } 是等比数列,并求其通项公式;

(2)若 S 5 = 31 32 ,求 λ

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号