游客
题文

如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

(1)计算: ( 2020 ) 0 - 4 + | - 3 |

(2)化简: ( a + 2 ) ( a - 2 ) - a ( a + 1 )

如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B AC 的延长线上,连结 OA OB DA DB

(1)如图1,当 AC / / x 轴时,

①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;

②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c

(2)如图2,若 b = - 2 BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.

已知在 ΔABC 中, AC = BC = m D AB 边上的一点,将 B 沿着过点 D 的直线折叠,使点 B 落在 AC 边的点 P 处(不与点 A C 重合),折痕交 BC 边于点 E

(1)特例感知 如图1,若 C = 60 ° D AB 的中点,求证: AP = 1 2 AC

(2)变式求异 如图2,若 C = 90 ° m = 6 2 AD = 7 ,过点 D DH AC 于点 H ,求 DH AP 的长;

(3)化归探究 如图3,若 m = 10 AB = 12 ,且当 AD = a 时,存在两次不同的折叠,使点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围.

某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.

(1)求甲、乙两个车间各有多少名工人参与生产?

(2)为了提前完成生产任务,该企业设计了两种方案:

方案一 甲车间租用先进生产设备,工人的工作效率可提高 20 % ,乙车间维持不变.

方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.

设计的这两种方案,企业完成生产任务的时间相同.

①求乙车间需临时招聘的工人数;

②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.

如图,已知 ΔABC O 的内接三角形, AD O 的直径,连结 BD BC 平分 ABD

(1)求证: CAD = ABC

(2)若 AD = 6 ,求 CD ̂ 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号