如图,已知在平面直角坐标系 xOy 中,抛物线 y = - x 2 + bx + c ( c > 0 ) 的顶点为 D ,与 y 轴的交点为 C .过点 C 的直线 CA 与抛物线交于另一点 A (点 A 在对称轴左侧),点 B 在 AC 的延长线上,连结 OA , OB , DA 和 DB .
(1)如图1,当 AC / / x 轴时,
①已知点 A 的坐标是 ( - 2 , 1 ) ,求抛物线的解析式;
②若四边形 AOBD 是平行四边形,求证: b 2 = 4 c .
(2)如图2,若 b = - 2 , BC AC = 3 5 ,是否存在这样的点 A ,使四边形 AOBD 是平行四边形?若存在,求出点 A 的坐标;若不存在,请说明理由.
如图,已知△ABC的三个顶点坐标为A(0,)、B(3,)、C(2,1). (1)在网格图中,画出△ABC以点B为位似中心,放大到2倍后的位似△; (2)写出、的坐标(其中与A 对应、与C 对应)
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD. (1)证明:△ABC∽△DCA; (2)若AC=6,BC=9,求AD长.
为了测量电线杆的高度AB,在离电线杆24米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角α=30°,求电线杆AB的高度(精确到0.1米)
解方程:
计算:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号