在△ABC中,a,b,c分别为内角A,B,C的对边,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.
已知函数f(x)=-2x+4,令Sn=f()+f(
)+f(
)+…+f(
)+f(1).
(1)求Sn;
(2)设bn=(a∈R)且bn<bn+1对所有正整数n恒成立,求a的取值范围.
为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知,甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP260万元;乙项目每项投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP200万元,已知该地为甲、乙两项目最多可投资3 000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP最大?
已知向量m=(sin
,1),n=(cos
,cos2
).记f(x)=m·n.
(1)若f(α)=,求cos(
-α)的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cos B=bcos C,若f(A)=,试判断△ABC的形状.
已知函数f(x)=,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求证:数列是等差数列;
(2)求数列{|bn|}的前n项和Tn.
设函数f(x)=cos+2cos2
,x∈R.
(1)求f(x)的值域;
(2)记△ABC的内角A、B、C的对边长分别为a、b、c,若f(B)=1,b=1,c=,求a的值.