在中,
分别是三内角
对应的三边,已知
.
(1)求角的大小;
(2)若,判断
的形状.
已知直线在下列条件下求
的值.
;
;
证明不等式:
已知函数.
(Ⅰ)当时,讨论
的单调性;
(Ⅱ)设当
时,若对任意
,存在
,使
,求实数
取值范围.
如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶
点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
某学校举行知识竞赛,第一轮选拔共设有四个问题,规则如下:
①每位参加者计分器的初始分均为10分,答对问题分别加1分、2分、3分、6分,答错任一题减2分;
②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局,当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;
③每位参加者按问题顺序作答,直至答题结束.
假设甲同学对问题回答正确的概率依次为
,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用表示甲同学本轮答题结束时答题的个数,求
的分布列和数学的
.