某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?
如图12-1,已知直线y= -x+4交x轴于点A,交y轴于点B.
(1)写出A、B两点的坐标分别是:;
(2)设点P是射线y = x()上一点,点P的横坐标为t,M是OP的中点(O是原点),以PM为对角线作正方形PDME.正方形PDME与△OAB公共部分的面积为S,求S与t之间的函数关系式,并求S的最大值.(图12-2、12-3供你探索问题时使用)
如图9,一种零件的横截面由三角形、矩形、扇形组成,其中∠BOA=60°,AD=25mm,半径AO=10mm,求该零件的横截面积.
图9
如图,点0是等边△ABC内一点,∠AOB=110°,∠BOC=α,OC=CD,
且∠DOC=60°连接OD.
(1)求证:△COD是等边三角形
(2)当α=150°时,试判断△AOD的形状,并说明理由
(3)探究:当α为多少度时,△AOD是等腰三角形
如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且 BD=DE.
(1)如果∠BAE= 40°,那么∠B=_______° ,∠C=_______° ;
(2)如果△ABC的周长为13cm,AC=6cm,那么△ABE的周长=_________cm;
(3)你发现线段AB与BD的和等于图中哪条线段的长,并证明你的结论.
如图5,在平面直角坐标系中,
,
,
.
(1)在图5中作出关于
轴的对称图形
.
(2)写出点的坐标.
(3)求出的面积.