小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.
先化简,再求值: ,其中 .
在平面直角坐标系中,抛物线 为常数)的顶点为 .
(1)当 时,点 的坐标是 ,抛物线与 轴交点的坐标是 ;
(2)若点 在第一象限,且 ,求此抛物线所对应的二次函数的表达式,并写出函数值 随 的增大而减小时 的取值范围;
(3)当 时,若函数 的最小值为3,求 的值;
(4)分别过点 、 作 轴的垂线,交抛物线的对称轴于点 、 .当抛物线 与四边形 的边有两个交点时,将这两个交点分别记为点 、点 ,且点 的纵坐标大于点 的纵坐标.若点 到 轴的距离与点 到 轴的距离相等,直接写出 的值.
如图,在 中, , , ,点 为边 的中点.动点 从点 出发,沿折线 以每秒1个单位长度的速度向点 运动,当点 不与点 、 重合时,连结 .作点 关于直线 的对称点 ,连结 、 .设点 的运动时间为 秒.
(1)线段 的长为 ;
(2)用含 的代数式表示线段 的长;
(3)当点 在 内部时,求 的取值范围;
(4)当 与 相等时,直接写出 的值.
实践与探究
操作一:如图①,已知正方形纸片 ,将正方形纸片沿过点 的直线折叠,使点 落在正方形 的内部,点 的对应点为点 ,折痕为 ,再将纸片沿过点 的直线折叠,使 与 重合,折痕为 ,则 度.
操作二:如图②,将正方形纸片沿 继续折叠,点 的对应点为点 .我们发现,当点 的位置不同时,点 的位置也不同.当点 在 边的某一位置时,点 恰好落在折痕 上,则 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设 与 的交点为点 .求证: ;
(2)若 ,则线段 的长为 .