某品牌的饼干袋里,装有动物、笑脸、数字三种花纹的饼干(除花纹外其余都相同),其中有动物花纹饼干2个,笑脸花纹饼干1个,数字花纹饼干若干个,现从中任意拿出一个饼干是动物花纹的概率为.
(1)求口袋中数字饼干的个数;
(2)小亮同学先随机拿出一个饼干吃掉,又随机拿出一个饼干吃掉,请用“树状图法”或“列表法”,求两次吃到的都是动物花纹饼干的概率.
解方程:
先化简,再求值:,其中
计算:
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x 轴,y轴上,点B坐标为(其中
),在BC边上选取适当的点E和点F,将
沿OE翻折,得到
;再将
沿AF翻折,恰好使点B与点G重合,得到
,且
.
(1)求的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点
的坐标(不要求写出求解过程).
如图,在同一平面内,将两个全等的等腰直角和
摆放在一起,
为公共顶点,
,它们的斜边长为2,若
固定不动,
绕点
旋转,
、
与边
的交点分别为
、
(点
不与点
重合,点
不与点
重合),设
,
.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对加以证明.
(2)求与
的函数关系式,直接写出自变量
的取值范围.