2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度.小明为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
小明发现每月每户的用水量在5m2-35m2之间,有8户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变.根据小明绘制的图表和发现的信息,完成下列问题:
(1)n= ,小明调查了 户居民,并补全图1;
(2)每月每户用水量的中位数和众数分别落在什么范围?
(3)如果小明所在的小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
如图,∠1=∠2,∠1+∠2=162°,求∠3与∠4的度数.
如图,蚂蚁位于图中点A(2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )
如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.
(1)请利用平移的知识求出种花草的面积.
(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?
已知一个长8m,宽5m,高4m的长方体容器的容积是一个正方体容积的2倍,求这个正方体容器的棱长(结果可保留根号)
已知a2=1,|a|=﹣a,求的值.