吸烟有害健康,为配合“戒烟”运动,某校组织同学们在社区开展了“你支持哪种戒烟方式”的随机问卷调查,并将调查结果绘制成两幅不完整的统计图:
根据统计图解答下列问题:
(1)同学们一共调查了 人?
(2)将条形统计图补充完整。
(3)若该社区有1万人,请你估计大约有多少人支持“警示戒烟”这种方式?
(4)为了让更多的市民增强“戒烟”意识,同学们在社区做了两期“警示戒烟”的宣传。在(3)的条件下,若每期宣传后,市民支持“警示戒烟”的平均增长率为20%,则两期宣传后支持“警示戒烟”的市民约有多少人?
如图, 已知抛物线与x轴相交于A、B,点B的坐标为(10,0),顶点M的坐标为(4,8),点P从点M出发,以每秒1个单位的速度沿线段MA向A点运动;点Q从点A出发,以每秒2个单位的速度沿AB向B点运动,若P、Q同时出发,当其中的一点到达终点时,另一点也随之停止运动,设运动时间为t秒钟。
(1)求抛物线的解析式;
(2)设△APQ的面积为S,求S与t之间的函数关系式,△APQ的面积是否有最大值?若有,请求出其最大值;若没有,请说明理由;
(3)当t为何值时,△APQ为等腰三角形?
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量(千克)随销售单价
(元/千克)的变化而变化,具体关系式为:
,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为
(元),解答下列问题:
(1)求与
的关系式;
(2)当取何值时,
的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
如图3,在中,
,
,
两点分别在
上,
,
,将
绕点
顺时针旋转,得到
(如图4,点
分别与
对应),点
在
上,
与
相交于点
.
(1)求的度数;
(2)求证:四边形是梯形;
(3)求的面积.
如图,在平面直角坐标系中,坐标原点为,
点坐标为
,
点坐标为
,以
的中点
为圆心,
为直径作⊙P与
轴的正半轴交于点
.
(1)求经过三点的抛物线对应的函数表达式.
(2)设为(1)中抛物线的顶点,求直线
对应的函数表达式.
(3)试说明直线与⊙P的位置关系,并证明你的结论.
生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为
,宽为
,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点),试求
的取值范围.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点
与点
的距离(用
表示)