列方程或方程组解应用题:
为保证“燕房线”轻轨建设,我区对一条长2 500米的道路进行改造.在改造了1 000米后,为了减少施工对交通造成的影响,采用了新的施工工艺,使每天的工作效率是原来的1.5倍,结果提前5天完成任务.求原来每天改造道路多少米?
本题14分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用共100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.
(本题10分)八一中学初三年级的一场篮球赛中,如图队员甲正在投篮,已知球出手时离地面高m,与球圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m.设篮球运行轨迹为抛物线,篮圈距地面3m.
(1)建立如图的平面直角坐标系,问此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
(本题10分)如图,二次函数y=a-4x+c的图象过原点,与x轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请求出点P的坐标.
(本题10分)如图,直线y=x+m和抛物线y=+bx+c都经过点A(1,0),
B(3,2).
(1)求m的值和抛物线的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)
(本题10分)已知二次函数.
(1)用配方法把该函数化为(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;
(2)求这个函数图象与x轴、y轴的交点坐标.