如图,直线与x轴,y轴分别相交于点B,点C,经过B、C两点的抛物线
与x轴的另一交点为A,顶点为P,且对称轴是直线
.
(1)求A点的坐标及该抛物线的函数表达式;
(2)求出∆PBC的面积;
(3)请问在对称轴右侧的抛物线上是否存在点Q,使得以点A、B、C、Q所围成的四边形面积是∆PBC的面积的
?若存在,请求出点Q的坐标;若不存在,请说明理由.
如图,已知A(-4,2)、B(2,-4)是一次函数y=kx+b的图象和反比例函数y= 的图象上的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与y轴的交点C的坐标及△AOB的面积;
如图所示,在梯形ABCD中,AB∥CD,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
(1)求证:梯形ABCD是等腰梯形.
(2)若∠BDC=30°,AD=5,求CD的长.
如图所示,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90°,求这块地的面积.
如图所示,已知点D在△ABC的边BC上,DE∥AC,交AB于点E,DF∥AB,交AC于点F.
(1)求证:AE=DF
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
某省现在正处于50年不遇的干旱.某中学八年级(2班)共50名同学,开展了“献爱心”捐款活动,活动结束后,班长将捐款情况进行了统计,并绘制成了如图所示的统计图.
(1)求50名同学的捐款平均数.
(2)该中学共有学生2000名,请根据该班的捐款情况,估计这所中学的捐款数.