某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的,已知小明每次投篮投中的概率都是.
(1)求小明在投篮过程中直到第三次才投中的概率;
(2)求小明在4次投篮后的总得分的分布列和期望.
已知数列是首项为
,公比
的等比数列,设
,数列
.
(1)求数列的通项公式;(2)求数列
的前n项和Sn.
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
△ABC中,a,b,c分别是角A,B,C的对边,,且
,
(Ⅰ)求△ABC的面积;(Ⅱ)若a=7,求角∠C
已知函数,
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根
,请求出一个长度为
的区间
,使
;如果没有,请说明理由?(注:区间
的长度
).
已知两直线,求分别满足下列条件的
、
的值.
(1)直线过点
,并且直线
与直线
垂直;
(2)直线与直线
平行,并且坐标原点到
、
的距离相等.