已知a,b,c为互不相等的非负数,求证:a2+b2+c2>(
+
+
).
(本小题12分)某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:
(1)射中10环或7环的概率;(2)不够7环的概率。
(本小题12分) 在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足()·
=0,求t的值。
(本小题满分15分)已知是定义在
上的奇函数,当
时,
(1)求的解析式;
(2)是否存在实数,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由。
(本小题满分15分)已知函数,
.
(1)讨论函数的单调区间;
(2)设函数在区间
内是减函数,求
的取值范围.
(本小题满分14分)已知函数
(1)若不等式的解集为
或
,求
的表达式;
(2)在(1)的条件下, 当时,
是单调函数, 求实数k的取值范围;
(3)设,
且
为偶函数, 判断
+
能否大于零?