如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点
均匀地固定在半径为
的圆
上(圆
在地面上),
三点相异且共线,
与地面垂直. 现要求点
到地面的距离恰为
,记用料总长为
,设
.
(1)试将表示为
的函数,并注明定义域;
(2)当的正弦值是多少时,用料最省?
(本小题满分13分)已知数列{an}的前n项和为Sn,又a1=1,a2=2,且满足Sn+1=kSn+1,
(1)求k的值及{an}的通项公式;
(2)若,求证:
.
(本小题满分10分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,
满足.
(Ⅰ)求B;
(Ⅱ)若,设
,
,求函数
的解析式和最大值.
如图,直线过点
,夹在两已知直线
和
之间的线段
恰被点
平分.
(Ⅰ)求直线的方程;
(Ⅱ)设点,且
,求:
的面积.
(本小题满分13分)已知是一个单调递增的等差数列,且满足
,
,数列
满足
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题满分13分)在中,已知
.
(Ⅰ)求sinA与角B的值;
(Ⅱ)若角A,B,C的对边分别为的值.[