游客
题文

某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.
若果园恰能在约定日期(日)将水果送到,则销售商一次性支付给果园20万元; 若在约定日期前送到,每提前一天销售商将多支付给果园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.
为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:

      统计信息
汽车行驶路线
不堵车的情况下到达城市乙所需 时间(天)
堵车的情况下到达城市乙所需时间(天)
堵车的概率
运费(万元)
公路1
2
3


公路2
1
4


 
(注:毛利润销售商支付给果园的费用运费)
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求的分布列和数学期望;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

建造一个容量为,深度为的长方体无盖水池,如果池底和池壁的造价每平方分别为180元和80元,求水池的最低总造价,并求此时水池的长和宽。

△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADB=30o,求AB,AC的长及△ABC的面积。

(本小题满分15分)
已知以点为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点。
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求的最小值及此时点P的坐标。

(本小题满分15分)
设函数(其中是函数的导函数)
(Ⅰ)求函数的极大值;
(II)若时,恒有成立,试确定实数a的取值范围。

(本小题满分分)
(Ⅰ)若是公差不为零的等差数列前n项的和,且成等比数列,求数列的公比;
(II)设是公比不相等的两个等比数列,,证明数列不是等比数列。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号