已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.(1)证明: 为定值;(2)若△POM的面积为,求向量与的夹角;(3)证明直线PQ恒过一个定点.
已知向量,,且与满足,其中实数. (1)试用表示; (2)求的最小值,并求此时与的夹角的值.
设为数列{}的前项和,已知,2,N (1)求,并求数列{}的通项公式;(2)求数列{}的前项和.
如图,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中. (1) 证明://平面; (2) 证明:平面; (3) 当时,求三棱锥的体积.
已知函数,. (1)求的值; (2)若,,求.
(1)的方程为,根据下列条件分别确定的值.①轴上的截距是;②的倾斜角为; (2)求经过直线,的交点,并且与直线垂直的直线方程
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号