已知点P(2,1)在抛物线C1:x2=2py(p>0)上,直线l过点Q(0,2)且与抛物线C1交于A、B两点.
(1)求抛物线C1的方程及弦AB中点M的轨迹C2的方程;
(2)若直线l1、l2分别为C1、C2的切线,且l1∥l2,求l1到l2的最近距离.
已知等比数列中,
.记数列
的前n项和为
.
(1)求数列的通项公式;
(2)数列中,
,数列
的前n项和
满足:
,
, 求:
.
在中,角
的对边分别为
.已知
,
.
(1)求的值.
(2)求的取值范围.
本题满分10分)
已知函数
(1)判断的单调性并用定义证明;
(2)设,若对任意
,存在
(
),使
,求实数
的最大值.
(本题满分8分)
爱因斯坦提出:“人的差异在于业余时间”.某校要对本校高一学生的周末学习时间进行调查.现从中抽取50个样本进行分析,其频率分布直方图如图所示.记第一组[0,2),第二组[2,4),…,以此类推.
(1)根据频率分布直方图,估计高一段学生周末学习的平均时间;
(2)为了了解学习时间较少同学的情况,现从第一组、第二组中随机抽取2位同学,问恰有一位同学来自第一组的概率.
(本题满分7分)
已知是第三象限角,且
.
(1)求的值;
(2)设的终边与单位圆交于点
,求点
的坐标.