某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
(1)先化简,再求值: ,其中
;
(2)解不等式组,并写出它的整数解.
如图,是的正方形网格,⊿ABC是格点三角形(顶点在小正方形顶点上).
(1)求△ABC的面积;
(2)请画出与⊿ABC相似但不全等的另一个格点三角形,并写出与原三角形的相似比与面积比.
给出三个多项式:,
,
,请选择你喜欢的两个多项式进行加法运算,并把结果分解因式。
已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等.
(2)记S=S△OEF-S△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,请直接写出点F的坐标,若不存在,请说明理由.
将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是线段AC上的一个动点.
(1)当点P运动到∠ABC的平分线上时,连结DP,求DP的长;
(2)当点P在运动过程中出现PD=BC时,∠PDA=;
(3)当PC=时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上,此时□DPBQ的面积=.