游客
题文

某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取名学生的数学成绩, 制成下表所示的频率分布表.
(1)求的值;
(2)若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2名与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.

组号
 分组
频数
频率
第一组



第二组


 
第三组



第四组



第五组



合计


 

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

已知无穷数列中,是首项为,公差为的等差数列;是首项为,公比为的等比数列,并对任意,均有成立,(1)当时,求;(2)若,试求的值;(3)判断是否存在,使成立,若存在,求出的值;若不存在,请说明理由.

要获得某项英语资格证书必须依次通过听力和笔试两项考试,只有听力成绩合格时,才可继续参加笔试的考试.已知听力和笔试各只允许有一次补考机会,两项成绩均合格方可获得证书.现某同学参加这项证书考试,根据以往模拟情况,听力考试成绩每次合格的概率均为,笔试考试成绩每次合格的概率均为,假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)求他恰好补考一次就获得证书的概率;
(3)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求参加考试次数的分布列和期望值

已知圆内一定点,为圆上的两不同动点.
(1)若两点关于过定点的直线对称,求直线的方程.
(2)若圆的圆心与点关于直线对称,圆与圆交于两点,且,求圆的方程.

已知函数(其中为正常数,)的最小正周期为
(1)求的值;
(2)在△中,若,且,求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号