某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取名学生的数学成绩, 制成下表所示的频率分布表.
(1)求,
,
的值;
(2)若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2名与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.
组号 |
分组 |
频数 |
频率 |
第一组 |
![]() |
![]() |
![]() |
第二组 |
![]() |
![]() |
![]() |
第三组 |
![]() |
![]() |
![]() |
第四组 |
![]() |
![]() |
![]() |
第五组 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
甲、乙两个粮库要向A、B两镇运送大米,已知甲库可调出100t大米,乙库可调出80t大米,A镇需70t大米,B镇需110t大米,两库到两镇的路程和运费如下表:
路程/km |
运费/(元·t-1·km-1) |
|||
甲库 |
乙库 |
甲库 |
乙库 |
|
A镇 |
20 |
15 |
12 |
12 |
B镇 |
25 |
20 |
10 |
8 |
(1)这两个粮库各运往A、B两镇多少t大米,才能使总运费最省?此时总运费是多少?
(2)最不合理的调运方案是什么?它使国家造成的损失是多少?
对于函数,若存在实数
,使
成立,则称
为
的不动点.
(1)当时,求
的不动点;
(2)若对于任何实数,函数
恒有两相异的不动点,求实数
的取值范围;
(3)在(2)的条件下,若的图象上
、
两点的横坐标是函数
的不动点,且直线
是线段
的垂直平分线,求实数
的最小值.
已知点M(-2,0),N(2,0),动点P满足条件,该动点的轨迹为F,
(1)求F的方程。
(2)若A、B是F上的不同两点,O是坐标原点,求的最小值。
已知向量=(cos
x,sin
x),
=(
),且x∈[0,
].
(1)求;
(2)设函数+
,求函数
的最值及相应的
的值。
设数列满足:
,(n=1,2,…)。
(1)令,(n=1,2,…)。求数列
的通项公式;(2)求数列
的前n项和Sn。