游客
题文

已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.
(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);
(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 相似多边形的性质
登录免费查看答案和解析
相关试题

某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一点(不与点A、B重合),连结CO并延长CO交⊙O于点D,连结AD.

(1)求弦长AB的长度;(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.

如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;

如图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号