已知向量,n∈N*,向量
与
垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
在平面直角坐标系中,已知圆心在
轴上、半径为
的圆
位于
轴右侧,且与直线
相切.
(1)求圆的方程;
(2)在圆上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点.
(1)证明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.
定义在上奇函数
与偶函数
,对任意
满足
+
a为实数
(1)求奇函数和偶函数
的表达式
(2)若a>2, 求函数在区间
上的最值
(1) 已知直线(a+2)x+(1-a)y-3="0" 和直线(a-1)x +(2a+3)y+2="0" 互相垂直.求a值
(2) 求经过点并且在两个坐标轴上的截距的绝对值相等的直线方程
已知函数.
(1)列表并画出函数在长度为一个周期的闭区间上的简图;
(2)将函数的图象作怎样的变换可得到
的图象?