在平面直角坐标系
中,已知曲线
:
,在极坐标系(与平面直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,直线
的极坐标方程为
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍、
倍后得到曲线
,试写出直线
的直角坐标方程和曲线
的参数方程;
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
已知{an}是等差数列,d为公差且不为0,a1和d均为实数,它的前n项和记作Sn,设集合A={(an,
)|n∈N*},B={(x,y)|
x2-y2=1,x,y∈R}.
试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明
(1)若以集合A中的元素作为点的坐标,则这些点都在同一条直线上;
(2)A∩B至多有一个元素;
(3)当a1≠0时,一定有A∩B≠
.
已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠
,求实数m的取值范围.
向50名学生调查对A、B两事件的态度,有如下结果: 赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人. 问对A、B都赞成的学生和都不赞成的学生各有多少人?
设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=
,证明此结论.
设函数
,其中
为正整数.
(1)判断函数
的单调性,并就
的情形证明你的结论;
(2)证明:
;
(3)对于任意给定的正整数
,求函数
的最大值和最小值.