在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相邻整数的概率;
(2)求取出的两个球上标号之和能被3整除的概率.
计算:
(1)
; (2)
;
(3)
+
; (4)
.
函数f(x)=ax3-2bx2+cx+4d (a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取极小值为-
.
(1)求a,b,c,d的值;
(2)证明:当x∈[-1,1]时,图象上不存在两点使得过此两点处的切线互相垂直;
(3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤
.
函数y=
,写出求该函数值的算法及流程图.
设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与f(x)的图象关于y轴对称.求证:f(x+
)为偶函数.
已知复数z=a+bi(a,b∈R)且a2+b2=25,(3+4i)z是纯虚数,求z的共轭复数.