甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次任意抽取3道题,独立作答,然后由乙回答剩余3题,每人答对其中的2题就停止答题,即闯关成功。已知6道备选题中,甲能答对其中的4道题,乙答对每道题的概率都是.
(1)求甲、乙至少有一人闯关成功的概率;
(2)设甲答对题目的个数为,求
的分布列及数学期望.
已知是椭圆
上的一点,求
到
(
)的距离的最小值.
若在边长为的正三角形
的边
上有
(
N*,
)等分点,沿向量
的方向依次为
,记
,若给出四个数值:①
②
③
④
,则
的值不可能的共有()
A.1个 | B.2个 | C.3个 | D.4个 |
已知数列是等差数列,其前n项和为Sn,若
,
.
(1)求;
(2)若数列{Mn}满足条件: ,当
时,
-
,其中数列
单调递增,且
,
.
①试找出一组,
,使得
;
②证明:对于数列,一定存在数列
,使得数列
中的各数均为一个整数的平方.
如图,在平面直角坐标系中,已知椭圆
:
,设
是椭圆
上的任一点,从原点
向圆
:
作两条切线,分别交椭圆于点
,
.
(1)若直线,
互相垂直,求圆
的方程;
(2)若直线,
的斜率存在,并记为
,
,求证:
;
(3)试问是否为定值?若是,求出该值;若不是,说明理由.
已知函数(其中
是自然对数的底数),
,
.
(1)记函数,且
,求
的单调增区间;
(2)若对任意,
,均有
成立,求实数
的取值范围.