游客
题文

某校夏令营有3名男同学和3名女同学,其年级情况如下表:

 
一年级
二年级
三年级
男同学



女同学



 
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足.”
(1)判断函数是否是集合M中的元素,并说明理由;
(2)集合M中的元素具有下面的性质:若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;
(3)设是方程的实数根,求证:对于定义域中任意的,当,且时,.

已知椭圆两焦点分别为F1F2P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PAPB分别交椭圆于AB两点.

(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值。

已知数列的前n项和满足:(a为常数,且).(Ⅰ)求的通项公式;
(Ⅱ)设,若数列为等比数列,求a的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为Tn .
求证:

椭圆C的中心为坐标原点O,焦点在y轴上,离心率e = ,椭圆上的点到焦点的最短距离为1-e, 直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
(1)求椭圆方程;
(2)若,求m的取值范围.

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图) .
(1) 当x=2时,求证:BD⊥EG ;
(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3) 当 f(x)取得最大值时,求二面角D-BF-C的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号