某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:
候选人 |
面试 |
笔试 |
||
形体 |
口才 |
专业水平 |
创新能力 |
|
甲 |
86 |
90 |
96 |
92 |
乙 |
92 |
88 |
95 |
93 |
(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?
(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,那么你认为该公司应该录取谁?
在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量(个)与销售单价
(元/个)之间的对应关系如图所示:
(1)观察图象判断与
之间的函数关系,并求出函数关系式;
(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润(元)与销售单价
(元/个)之间的函数关系式;
(3)若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.
如图,AB是⊙O的直径,直线EF切⊙O于点C, AD⊥EF于点D.
(1)求证:AC平分∠BAD;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留)
已知:的两边AB、AD的长是关于
的方程
的两个实数根.
(1)当为何值时,
是菱形?求出这时菱形的边长;
(2)若AB=2,那么的周长是多少?
如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).
(1)求抛物线的解析式;
(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若ÐDBC=30°,CD=4,求四边形ABED的面积.